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Abstract Tracking is an essential process required for
many techniques used in special effects and post produc-
tion. Standard trackers frequently produce poor results
which are difficult to edit by hand. These trackers nor-
mally use only previous frames to find the target position
in each frame even though the whole sequence is available
off-line. This paper introduces active tracking contours
which can find the motion of the target by fitting to the
whole sequence simultaneously, rather than frame–by–
frame. This gives the contour a high degree of resilience
against noise, occlusions and false matches. Since these
contours are represented as spline curves they are simple
and intuitive for an operator to edit. The performance of
active tracking contours is compared to standard tracking
algorithms.

1 INTRODUCTION

Object tracking is often required for motion picture spe-
cial effects and post production. It is used for techniques
such as replacement, image stabilisation and matchmov-
ing. The Block Matching Algorithm (BMA) [1] is the
most common approach for tracking. Here, a reference
block from a previous frame is compared to blocks in
the current frame using a measure such asnormalised
cross correlation. The position of the block which has
the maximum cross correlation with the reference block
is taken to be the new position of the object in the current
frame. Such block trackers often lose track. The process
can therefore be quite laborious: the human operator must
stop the tracker and input the correct position of the block
every few frames.

There are three major causes of errors in tracking: where
the block is obscured giving poor correlation in the cur-
rent frame; where the correct match is not the global
maximum but only a local maximum; and where small
amounts of noise cause the best match to be a few pixels
away from the actual position of the object. The latter re-
sults in small errors in the track position which result in
tracking jitter, while the former both tend to cause total
loss of tracking. A Kalman Filter [2] can often be used to
smooth tracks, but often fails to prevent loss of tracking
caused by multiple maxima or poor correlation.

The BMA is most commonly used in real time applica-
tions such as vehicle control or surveillance [3]. In these
systems, tracking must be progressive: the object position
must be estimated without reference to future frames and
any error made in previous estimates cannot be corrected.
However, in movie post production, the entire sequence
to be tracked is available off-line and it is not necessary
to track progressively.

For some techniques in post-production it is desirable to
edit the tracked path, either to correct for an error in the
tracking or to create a different path for a new object
based on the path taken by an existing object. Such edit-
ing can be difficult. Since the path is defined by a new
point in each frame, every frame must be altered individ-
ually.

In this paper, we present a new approach to object track-
ing for special effects in post production. We fit a contour
of best fit to the entire sequence, interpolating between
two end points indicated by the user. Since this contour
has a small number of control points, it is simple to edit.
Contours also have inherent smoothing properties, mak-
ing them resistant to jitter in tracks, and also robust to ar-
eas where there is poor correlation or a false global max-
imum: the contour will follow peaks in local maxima if
these form a suitable path between the end points.

This paper is organised as follows: in the next section, ac-
tive contours (snakes) and their use to find object bound-
aries in images is reviewed. Adaptations required for use
in fitting object paths to image sequences are explained.
The algorithm employed for tracking is then summarised.
Results of this block tracking algorithm are finally com-
pared to standard techniques.

To avoid confusion, the term ‘snake’ will be used to re-
fer to a contour which is used to find boundaries in still
images and ‘tracking contour’ to refer to the new contour
described in this paper and used to find paths of objects in
image sequences.

2 ACTIVE CONTOURS

2.1 Snakes to find object boundaries

Snakes were originally proposed by Kasset al [4] to
model object boundaries in images. Edge detectors of-
ten produce many false edges in the image, and there may
be parts where there is no detectable edge. A snake is re-
sistant to false and missing edges, since it finds a path of
minimal energy along edges.

A snake is driven by two opposing forces: theinternal
force, proportional and normal to the curvature of the
snake, which prevents the snake bending too tightly by
trying to push the snake into a circle, and theexternal
force, derived from the image edge map, which acts to
push the snake towards the edges in the image. Typically,
this force is proportional to the derivative of the image
edge map, so the snake is pushed towards peaks in the
edge image, which correspond to edges in the original im-
age.



Figure 1: Schematic of an active tracking contour

Typically, these two are forces are assumed to act on con-
trol points, which are connected by straight lines (such as
in the implementation by Lobregt and Viergever [5]) or
by a smooth spline. The control points are considered as
masses upon which the forces act.

The algorithm is iterative: the snake is initialised to lie
close to the edges in the image, either by hand or by some
alternative technique. In each iteration, the external and
internal forces acting on each control point are calculated
from the edge image and from the local curvature of the
snake through the control point respectively. Following
classical Newtonian mechanics, the force acting on the
snake causes it to accelerate towards a new position.

Since the snake can change size, contour points are added
or removed to keep the length of the sections between
them within set limits. The process repeats until the snake
is at rest.

Other information, apart from edges, can be used as the
external force field. Malpicaet al [6] used optical flow as
an external energy field to cause the snake to settle along
the boundary of differently moving objects. Zhouet al [7]
derived the external energy field from colour and texture
information.

2.2 Adaptation to tracking contours

Our tracking contours are slightly different from snakes:
In a tracking contour, the start and end points in the first
and last frames, respectively, are fixed by the user, so
only the intermediate position of the contour can change.
The contour is defined by control points which move in
space but maintain even spacing in time (eg if there are

20 frames between the start and the end and there are 8
control points then there will always be a control point
every 2.5 time steps).

Fig 1 shows a schematic of a tracking contour. The con-
tour begins and ends at positions set by the operator and
passes through each intermediate frame. The start and
end positions are also used to extract reference blocks
for block matching. The tracking contour is moved by
the application of forces within each frame, created by
good matches (high correlation) to the reference block.
The strength of the force decreases with distance between
the current contour position and the area of good match.
Areas of poor match (low correlation) also have weaker
forces than good correlation.

The contour is not always pulled towards the global max-
imum correlation in each frame. If this area is too far
away it will instead by pulled towards a local maximum.
This unique property gives the tracking contour resilience
against areas of false high matches.

2.2.1 The external force

Whereas snakes are pulled towards edges in images,
tracking contours are pulled towards areas which have
a high correlation with the reference block. Normalised
Cross Correlation (Phase Correlation) is used to compare
blocks in the image. Given a reference blockR and a test
blockT , normalised cross correlationc is given by
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where theij term indexes each pixel within the block and
R andT indicate the mean intensity of the reference block
and test block respectively. Cross correlation values usu-
ally lie on the range(−1, 1). The division by 2 and addi-
tion of 1

2 produces a value which lies on the range(0, 1)

The external force acting at a particular point at position
p in a given framen of an image is calculated as follows:
Each pixel at positiont within a given distance ofp is
considered to exert a forcef onp, given by

f =
(p− t) · c
‖p− t‖α

(2)

whereα is some constant greater than 1 andc is the nor-
malised cross correlation between the block centred at
point t and the nearest reference block. That isf acts
in the direction

−→
tp and is attenuated according to dis-

tance and according to the magnitude of the match. Thus,
matches which are near the curve have more influence
than those that are farther away.

The total force acting onp is the sum of all forces from
nearby pixels. Since finding the cross correlation values
in computationally intensive they are cached for reuse in
subsequent iterations.



Two minor modifications are made to ensure better re-
sults. We have found that large areas of medium correla-
tion tend to dominate over small areas of high correlation,
causing the resultant force to act away from maxima and
towards more average values. This can be prevented by
ignoring all pixels which have a correlation lower than
a set value (typically about 0.7). Also, pixels are ignored
where the correlation value is lower than that given for the
block based around pointp: Thus, the force cannot act to
pull p towards a worse match than its current position.

2.2.2 The internal force

Snakes have large numbers of control points upon which
the external forces act. Using large numbers of control
points in tracking contours would make them harder to
edit and make the contour less smooth. It is important
that the position of the control points (and hence the po-
sition of the contour) be influenced by every frame in the
sequence, not just those nearby the control points. Thus,
some algorithm for distributing the forces acting upon
tracking contour in each frame of the sequence to the con-
trol points is required. This is achieved while implicitly
implementing the internal forces on the contour. By dis-
tributing the force from the frame to every control point,
smoothness is maintained. The distribution is weighted
so that control points closer in the sequence to the frame
receive more force than those further away in time.

Let tn be the time index for framen, tck
be the time index

for control pointk. Let m be the maximum difference
between the time index of a control pointc andtn. The
forcefkn distributed to control pointck from framen is
given by

fkn = ufn (1 + m− |tn − tck
|)β (3)

whereβ controls the rate of fall-off (and therefore the
magnitude of the implicit internal force) andu is a
weighting factor given by

u =

(∑

h

(1 + m− |tn − tch
|)β

)−1

(4)

for each control pointh on the contour.

3 ALGORITHM

The algorithm for implementing the tracking contour is
shown in Fig. 3. Note there is a force included propor-
tional to the velocity of the snake. This is a damping fac-
tor which ensures that the contour eventually comes to
rest if there are no forces acting upon it, and prevents it
oscillating. Also, the forces are not calculated in one step
but in multiple passes. The reason for this is illustrated
in Fig. 4. In this case there is an area of false matches
close to the initial position of the contour, shown as a dot-
ted line. If forces from the entire contour are considered

Figure 4: Where the entire contour is settled simultane-
ously, the contour may be attracted towards areas of false
high matches in the centre of the contour (the time axis is
not shown in this figure)

from the beginning, the contour will be attracted towards
this area even though it is some distance from the true po-
sition of the contour; the correct matches will be too far
from the position of the contour for it to be attracted to-
wards them. Since the position of the contour is known at
the end points, frames close to these points are used first.
Subsequently more points are used to refine the contour
position. This ensures that the contour is always close to
points being considered. By the time the position of the
contour in the middle of the sequence is considered, it will
have moved away from the area of false matches.

Fig. 2 shows this process in operation. Initially, the con-
tour forms a straight line between the end points. In the
first iteration, only the first and last frames are in the ac-
tive set and so only these two frames act on the contour.
As time progresses, more frames are included in the ac-
tive set until all frames are acting on the contour.

In the case that the final path of the contour is close to the
initial linear path, this process is not necessary and the
contour can be resolved in a single step for speed.

4 RESULTS

The performance of our contour tracker has been com-
pared to common method of block tracking. In all cases,
the reference block is never updated: the block taken from
the initial frame marked by the user is used for the entire
sequence. a 16× 16 block was used for all sequences.

4.1 Standard BMA

A standard Block Matching Algorithm was run on the
data: The first frame was used as a reference block, and
the position of the best match in each subsequent frame
found using the Normalised Cross Correlation technique
(equation 1). Searching takes place in a search aperture



Figure 2: Progressively more and more frames provide forces (shown as arrows) which cause the contour to move

1. User indicates startSij and endEij positions of the snake in the start frames and end framee

2. Extract reference blocks around pointsSij andEij from the start and end frames

3. Initialise the snake as a straight line betweenSij andEij with n evenly spaced control points

4. Set of active frames =∅
5. Set of inactive frames = all intermediate frames

6. While there are frames in inactive set

(a) Remove first and last frames from inactive set and add to active set

(b) For several hundred iterations or until snake settles:

i. For each frame in active set

A. Let Pn be the position of contour in framen

B. Findfn, the force acting on pointPn (see section 2.2.1)

C. Distribute forcefn across all control points (see section 2.2.2)

ii. For each control pointk

A. Let Tk befk − ρvk wherevk is the velocity of of control pointk andρ is a constant

B. New velocity of contour pointvk ← vk + Tk/m wherem is a constant

C. New position of contour pointck ← ck + vk

Figure 3: Algorithm for contour tracking



centred around the match in the previous frame. The out-
put from the tracking is the position of the best match in
each frame.

Since our tracking contour has two fixed points rather than
only one from the initial frame, the BMA was run twice:
once using the initial frame as a reference block and pro-
gressing forwards through the sequence, and again using
the final frame as a reference block and progressing back-
wards through the sequence.

4.2 Kalman tracker

Tracking with Kalman filtering increases smoothness and
provides more robust tracking than the standard BMA ap-
proach. For comparison purposes, a Kalman filter was
used with a simple linear velocity model and no cross
terms (i.e. no dependency between the thex andy or-
dinates of the position, velocity and error estimates). In
each frame, the position of the best match (again using
the Normalised Cross Correlation technique) is found.
The Kalman filter then predicts the target position in the
subsequent frame and the search begins about this loca-
tion. Using the Kalman estimated position for the target
rather than the position of the best match helps to pre-
vent the tracking losing the target - the correct position of
the target is more likely to remain within the search aper-
ture even if the tracker drifts slightly. The output from
the tracking is the position component of the corrected
Kalman state vector.

Again, tracking took place in both forward and reverse
directions.

4.3 Curve of best fit

One of the advantages of our tracking contour is the ease
of editing of the position, simply by moving the control
points of the resultant curve. Instead of using a track-
ing contour, it would be possible to obtain a best fit curve
to the tracked results. Therefore, the performance of the
tracking contour has been compared to that of a curve fit-
ted to the Kalman filtered output.

The curve of best fit is approximated as follows: Initially,
a curve is fit linearly between the first and last points
found by the Kalman filter. The curve has the same num-
ber of control points as was used with the tracking con-
tour. Again, the control points maintain a fixed position
in time and can move in(x, y) only.

To fit the curve, each control point is moved to the po-
sition which minimises the total curve error. The error
in each frame is found by finding the Euclidean distance
between position of the contour and the position of the
Kalman filtered output. The total curve error is the error
in each frame summed over all frames. The process iter-
ates until no control point is moved between iterations.

4.4 Results

We tested our algorithm on two sequences [8], both of
which contain smooth curved motion.

4.4.1 Thecarparksequence

Thecarparksequence (720× 576, 25fps interlaced, 100
frames, 256 greys) was captured with a security cam-
era, videotaped onto analogue tape and then digitised.
Figs. 5(e) and 5(f) show the position of the hand marked
blocks in the start and end frames respectively: these are
the fixed points for the contour fit and the frames from
which the reference blocks are taken.

The tracking contour fit to the car is shown in Fig. 6,
which shows four frames of the sequence superimposed
with the contour drawn on top. Clearly, the contour has
correctly tracked the motion and does not deviate from
the true motion of the car.

4.4.2 Thecyclistsequence

The cyclist sequence (720× 576, 25fps interlaced, 155
frames, 256 greys) was captured with a digital video cam-
era. Fig. 7 show key frames of the sequence. The hand
marked positions for the start and end frame are shown in
Figs. 7(e) and 7(f). The tracking contour fit to this data is
shown in Fig. 8. Here, there is a minor deviation which
occurs when the cyclist passes the large vehicle, but the
motion is correctly tracked.

4.5 Numerical results

Since we have used real sequences as test data, ground
truth has been estimated by hand tracking each interme-
diate frame of the sequence.

The difference in each frame between our reference
ground truth and the position estimated by each of the
trackers is shown in Fig. 9 for thecarparkandcyclistse-
quences. The backward BMA and Kalman trackers can
be seen to lose track in thecyclist sequence. The track-
ing contour for thecyclistsequence appears to match the
ground truth particularly closely.

Table 1 compares the performance of all the algorithms
to the ground truth. The Root Mean Squared error was
used as a measure: The Euclidean distance between the
ground truth position and the position estimated by the
technique is measured. The RMSE is given by the root of
the average of the squared Euclidean distance.

Our technique shows a clear improvement over Kalman
filtered tracking, and, in the case of thecyclistsequence,
proves to be the most accurate method for tracking alto-
gether.

Since we are attempting to fit a curve to the underlying
data, the comparison with the track obtained by fitting a



(a) Start frame: frame 1825 (b) Frame 1850

(c) Frame 1875 (d) Final tracking frame: frame 1925

(e) Detail showing hand-marked position in
frame 1825

(f) Detail showing hand-marked position in
frame 1925

Figure 5: Thecarparksequence



Figure 6: Active contour fit tocarpark sequence shown over composite image of multiple frames in the sequence. The
position of the contour in frame 1865 is marked with a cross

curve to the Kalman data is most interesting: our active
contour fits the actual motion much better than a curve
fitted to any other form of data.

4.6 Discussion

The errors presented in table 1 show that our contour is
marginally better as a tracker than Kalman tracking and
is superior to curve fitting to a Kalman track. However,
the reference track used to compare these results was es-
timated by eye. There is therefore some error in this ref-
erence which will affect the results. Additionally, there
are problems with thecarparksequence caused by inter-
lacing and synchronisation problems. The resulting jit-
ter in the sequence is smoothed in the Kalman, contour
and curve fits, but neither in the standard BMA algorithm
nor in the reference ‘ground truth.’ This is undoubtedly
why the standard BMA tracker appears to perform so well
on this sequence. The appearance of spikes in the error
plots (Fig. 9) for all the techniques except for the standard
BMA suggest the presence of this jitter. The apparent er-
ror is caused by smoothing across the jitter.

It can be seen from Fig. 9 that only the tracking contour
accurately fits to both ends of the data. All other track-
ers drift off as they track, causing an increasingly large
error. This is particularly clear in the tracks for the for-
ward Kalman filter. Since the ends of tracking contours
are fixed, they ensure that the track will not diverge off at
either end. As expected, the point of greatest divergence
for the contour is towards the centre of the sequence.

Figure 10 illustrates an example from thecyclistsequence
where the active contour can perform better than any “best
match” case. This figure shows a surface plot of correla-
tion matches to the reference block in a small area of the
image. Here, the global maximum is marked with a verti-
cal cyan line in the centre of the image. This is some dis-
tance away from the correct match, shown in red, which
is close to a second peak in the correlation surface. The
tracking contour, shown in blue, has been attracted to-
wards this lower peak by previous and subsequent frames.
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Figure 10: When the true match is not the global maxi-
mum but a lower local maximum, the contour can locate
the correct position

Therefore the contour lies closer to the ground truth than
the best match. This confirms that tracking contours are
able to track where the best match may not be at the global
maximum but at a local maximum some distance away.

5 CONCLUSIONS AND FUTURE WORK

This paper has presented a new active contour model for
tracking the path of objects in off-line sequences. The
contour is represented as a spline curve which can be eas-
ily edited to correct for errors or to modify the path of the
object. The active contour approach produces a signifi-
cantly better fit than fitting a spline to a standard system
such as a Kalman tracker. Also, the success of the Kalman
filter is highly dependent on the selection of the noise pa-
rameters, which is less intuitive than selecting the param-
eters for an active contour. Furthermore, the tracking con-
tour appears robust to changes in the parameter values, re-
moving the need for fine parameter adjustments. Tracking
contours appear to be a valuable method for hand-assisted



(a) Start frame: frame 0 (b) Frame 50

(c) Frame 100 (d) End frame: Frame 154

(e) Detail showing hand-marked position in
frame 0

(f) Detail showing hand-marked position in
frame 154

Figure 7: Thecyclistsequence

Standard BMA Kalman Filter Curve fit to Active
Forwards Backwards Forwards Backwards best Kalman Tracking contour

Carpark 2.225 1.8294 2.6620 2.6409 2.6176 2.4639
Cyclist 1.5984 (Track fails) 1.5411 (Track fails) 1.5393 1.3251

Table 1: Comparative performance of different algorithms: RMSe compared to ground truth



Figure 8: Active tracking contour fit tocyclistsequence shown over composite image of multiple frames in the sequence.
Position of the contour in frame 120 is marked with a cross

off-line tracking, and an attractive tool for special effects
and post production.

Future work will investigate the possibility of using varied
reference blocks, perhaps by mixing the initial and the
final reference block.
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Figure 9: Graph of error (Euclidean distance between ground truth and tracked position) against time of each tracking
system


